
MicroJIT: A Lightweight Just-in-Time Compiler
to Improve Startup Times

Outline
The startup phase of an application represents a tiny fraction of the total
runtime, but it is considered, nevertheless, a critical phase for both client
and server environments.
We are investigating whether using two different Just-in-Time (JIT)
compilers in the same JVM can improve startup time. In our approach
the lightweight JIT system (i.e. MicroJIT) performs an initial, low-
optimized, but fast compilation while, at a later time, the standard JIT
recompiles Java bytecodes with better, but more expensive,
optimizations.

Motivation
● The time spent in the startup phase must be minimized to allow the
application to reach the throughput phase as quickly as possible.

● JIT produces highly optimized native code but with a cost in time and
computation.

● Investigate if using a lightweight JIT system can improve startup time.

Other techniques
● Ahead-of-Time compilation (AOT) uses code compiled before the start
of the JVM, usually saved from a previous execution.

● Offline profiling saves profiling information between JVM runs. The
information is used by JIT to optimize the compilation of Java methods.

● Multilevel JIT systems allow for compilation tuning for better (slower) or
worse (faster) optimization.

Design
We are porting MicroJIT, a lightweight JIT system, originally developed for
JAVA ME, to IBM J9 (Java 8).

MicroJIT differs from the standard JIT:
• Single pass synchronous compilation (no intermediate language).
• Small footprint.
• Template-based code generation.
• Works on the same stack structure (Java stack) used by the Interpreter
(i.e. no stack transitions).

• Can give up anytime to the VM to interpret even a single bytecode.
• Only a small subset of optimizations.
• Uses the same interface with the VM as the standard JIT.

JIT/VM interface
The JIT system must cooperate with the VM to perform operations that
change the state of the application or the state of the JVM: object
allocation, read/write barriers, synchronization, method invocation, Java
stack “management”.

Compilation criteria
MicroJIT compilation is triggered by the VM when a method is interpreted
n times (default: hundreds).
Standard JIT recompiles the method depending on different criteria:

• Counting: if method is executed m times (default: thousands).
• Profiling information: standard JIT requires profiling information to

generate highly optimized native code.

Federico Sogaro, Kenneth B. Kent, Eric Aubanel, Peter Shipton
University of New Brunswick, IBM Canada

Faculty of Computer Science
{fsogaro|ken|aubanel}@unb.ca, Peter_Shipton@ca.ibm.com

Time

Throughput phaseStartup phase

Objective: minimize the startup time

0

VM

MicroJIT JIT

sampling

Compilation criteria

interpret
bytecode

execute
non-optimized

native code

execute
optimized
native code

JIT compilation

	PowerPoint Presentation

